KAFKA的启动
直接运行Kafka.scala中的main方法(需要指定启动参数,也就是server.properties的位置)来启动Kafka。因为kafka依赖zookeeper,所以我们需要提前启动zookeeper,然后在server.properties中指定zk地址后,启动。
看一下main()方法:
def main(args: Array[String]): Unit = { try { // 加载对应的server.properties配置文件,并生成Properties实例. val serverProps = getPropsFromArgs(args)//这里生成一个KafkaServer的实例,这个实例生成时,会在实例中同时生成一个KafkaServer的实例,// 生成KafkaServer实例前,需要先通过serverProps生成出一个KafkaConfig的实例. val kafkaServerStartable = KafkaServerStartable.fromProps(serverProps) // attach shutdown handler to catch control-c Runtime.getRuntime().addShutdownHook(new Thread() { override def run() = { kafkaServerStartable.shutdown } })// 停止 服务 kafkaServerStartable.startup kafkaServerStartable.awaitShutdown } catch { case e: Throwable => fatal(e) System.exit(1) } System.exit(0) }
根据properties生成server实例
getPropsFromArgs(args),这一行很明确,就是从配置文件中读取我们配置的内容,然后赋值给serverProps。 KafkaServerStartable.fromProps(serverProps),
object KafkaServerStartable { def fromProps(serverProps: Properties) = { KafkaMetricsReporter.startReporters(new VerifiableProperties(serverProps)) new KafkaServerStartable(KafkaConfig.fromProps(serverProps)) } }
这块主要是启动了一个内部的监控服务(内部状态监控)。
KafkaServer的启动
下面是一个在java中常见的钩子函数,在关闭时会启动一些销毁程序,保证程序安全关闭。kafkaServerStartable.startup。跟进去可以很清楚的看到,里面调用的方法是KafkaServer中的startup方法:
// 启动kafka的调度器,这个KafkaScheduler的实例生成时需要得到background.threads配置的值,默认是10个,用于配置后台线程池的个数def startup() { try { info("starting") if(isShuttingDown.get) throw new IllegalStateException("Kafka server is still shutting down, cannot re-start!") if(startupComplete.get) return val canStartup = isStartingUp.compareAndSet(false, true) if (canStartup) { metrics = new Metrics(metricConfig, reporters, kafkaMetricsTime, true) brokerState.newState(Starting) // 启动scheduler 实例 /* start scheduler */ kafkaScheduler.startup() // 生产zk 初始化 并依赖 判断 broker 是否发生变化 /* setup zookeeper */ zkUtils = initZk() // 初始化创建并启动LogManager的实例, /* start log manager */ logManager = createLogManager(zkUtils.zkClient, brokerState) logManager.startup()// 如果broker.id的配置没有配置(小于0的值时),同时broker.id.generation.enable配置为true,默认也就是true,// 这个时候根据zk中/brokers/seqid路径的version值,第一次从0开始,每次增加.并加上reserved.broker.max.id配置的值,默认是1000,//来充当这个server的broker.id,同时把这个broker.id更新到logDir目录下的meta.properties文件中,//下次读取时,直接读取这个配置文件中的broker.id的值,而不需要重新进行创建. /* generate brokerId */ config.brokerId = getBrokerId this.logIdent = "[Kafka Server " + config.brokerId + "], " // 启动 kafka 的sockerServer socketServer = new SocketServer(config, metrics, kafkaMetricsTime) socketServer.startup()//,生成并启动ReplicaManager,此实例依赖kafkaScheduler与logManager实例. /* start replica manager */ replicaManager = new ReplicaManager(config, metrics, time, kafkaMetricsTime, zkUtils, kafkaScheduler, logManager, isShuttingDown) replicaManager.startup()//生成并启动KafkaController实例,此使用用于控制当前的broker中的所有的leader的partition的操作. /* start kafka controller */ kafkaController = new KafkaController(config, zkUtils, brokerState, kafkaMetricsTime, metrics, threadNamePrefix) kafkaController.startup() //生成并启动GroupCoordinator的实例,这个是0.9新加入的一个玩意,用于对consumer中新加入的与partition的检查,并对partition与consumer进行平衡操作. /* start group coordinator */ groupCoordinator = GroupCoordinator(config, zkUtils, replicaManager, kafkaMetricsTime) groupCoordinator.startup() // 根据authorizer.class.name配置项配置的Authorizer的实现类,生成一个用于认证的实例,用于对用户的操作进行认证.这个默认为不认证. /* Get the authorizer and initialize it if one is specified.*/ authorizer = Option(config.authorizerClassName).filter(_.nonEmpty).map { authorizerClassName => val authZ = CoreUtils.createObject[Authorizer](authorizerClassName) authZ.configure(config.originals()) authZ } // 成用于对外对外提供服务的KafkaApis实例,并设置当前的broker的状态为运行状态 /* start processing requests */ apis = new KafkaApis(socketServer.requestChannel, replicaManager, groupCoordinator, kafkaController, zkUtils, config.brokerId, config, metadataCache, metrics, authorizer) requestHandlerPool = new KafkaRequestHandlerPool(config.brokerId, socketServer.requestChannel, apis, config.numIoThreads) brokerState.newState(RunningAsBroker) Mx4jLoader.maybeLoad()//生成动态配置修改的处理管理,主要是topic修改与client端配置的修改,并把已经存在的clientid对应的配置进行修改. /* start dynamic config manager */ dynamicConfigHandlers = Map[String, ConfigHandler](ConfigType.Topic -> new TopicConfigHandler(logManager, config), ConfigType.Client -> new ClientIdConfigHandler(apis.quotaManagers)) // Apply all existing client configs to the ClientIdConfigHandler to bootstrap the overrides // TODO: Move this logic to DynamicConfigManager AdminUtils.fetchAllEntityConfigs(zkUtils, ConfigType.Client).foreach { case (clientId, properties) => dynamicConfigHandlers(ConfigType.Client).processConfigChanges(clientId, properties) }// 创建一个配置实例 并发起通知给个个block // Create the config manager. start listening to notifications dynamicConfigManager = new DynamicConfigManager(zkUtils, dynamicConfigHandlers) dynamicConfigManager.startup() /* tell everyone we are alive */ val listeners = config.advertisedListeners.map {case(protocol, endpoint) => if (endpoint.port == 0) (protocol, EndPoint(endpoint.host, socketServer.boundPort(protocol), endpoint.protocolType)) else (protocol, endpoint) } kafkaHealthcheck = new KafkaHealthcheck(config.brokerId, listeners, zkUtils, config.rack, config.interBrokerProtocolVersion) kafkaHealthcheck.startup() // Now that the broker id is successfully registered via KafkaHealthcheck, checkpoint it checkpointBrokerId(config.brokerId) /* register broker metrics */ registerStats() shutdownLatch = new CountDownLatch(1) startupComplete.set(true) isStartingUp.set(false) AppInfoParser.registerAppInfo(jmxPrefix, config.brokerId.toString) info("started") } } catch { case e: Throwable => fatal("Fatal error during KafkaServer startup. Prepare to shutdown", e) isStartingUp.set(false) shutdown() throw e } }
首先判断是否目前正在关闭中或者已经启动了,这两种情况直接抛出异常。然后是一个CAS的操作isStartingUp,防止线程并发操作启动,判断是否可以启动。如果可以启动,就开始我们的启动过程。
构造Metrics类 定义broker状态为启动中starting 启动定时器kafkaScheduler.startup() 构造zkUtils:利用参数中的zk信息,启动一个zk客户端 启动文件管理器:读取zk中的配置信息,包含__consumer_offsets和__system.topic__。重点是启动一些定时任务,来删除符合条件的记录(cleanupLogs),清理脏记录(flushDirtyLogs),把所有记录写到一个文本文件中,防止在启动时重启所有的记录文件(checkpointRecoveryPointOffsets)。
/** * Start the background threads to flush logs and do log cleanup */ def startup() { /* Schedule the cleanup task to delete old logs */ if(scheduler != null) { info("Starting log cleanup with a period of %d ms.".format(retentionCheckMs)) scheduler.schedule("kafka-log-retention", cleanupLogs, delay = InitialTaskDelayMs, period = retentionCheckMs, TimeUnit.MILLISECONDS) info("Starting log flusher with a default period of %d ms.".format(flushCheckMs)) scheduler.schedule("kafka-log-flusher", flushDirtyLogs, delay = InitialTaskDelayMs, period = flushCheckMs, TimeUnit.MILLISECONDS) scheduler.schedule("kafka-recovery-point-checkpoint", checkpointRecoveryPointOffsets, delay = InitialTaskDelayMs, period = flushCheckpointMs, TimeUnit.MILLISECONDS) } if(cleanerConfig.enableCleaner) cleaner.startup() }